Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Detecting old hotspot tracks in a stable continent remains challenging because of the lack of volcano chains on the surface and the fade of thermal anomalies with time. The northeastern American continent moved over the Cape Verde and the Great Meteor hotspots during 300–100 Ma. However, only the latter was confirmed by kimberlites and seismic velocity models. Our new 3D anisotropic model in northeastern America reveals strong positive radial anisotropy anomalies in the eastern Great Lakes, central Pennsylvania, and northwestern Virginia. These anomalies follow the Cape Verde hotspot track, providing the first geophysical evidence for the hotspot. A circular pattern of azimuthal anisotropy is also observed in the eastern Great Lakes and may be related to the Cape Verde plume activity. The plume was under the Great Lakes during 300–200 Ma and probably caused lithosphere thinning and low topography needed for forming the Lakes during the glacial era.more » « lessFree, publicly-accessible full text available January 16, 2026
-
Dynamic topography refers to vertical deflections of Earth’s surface from viscous flow within the mantle. Here we investigate how past subduction history affects present dynamic topography. We assimilate two plate reconstructions into TERRA forward mantle convection models to calculate past mantle states and predict Earth’s present dynamic topography; a comparison is made with a database of observed oceanic residual topography. The two assimilated plate reconstructions ‘Earthbyte’ and ‘Tomopac’ show divergent subduction histories across an extensive deep-time interval within Pacific-Panthalassa. We find that introducing an alternative subduction history perturbs our modelled present-day dynamic topography on the same order as the choice of radial viscosity. Additional circum-Pacific intra-oceanic subduction in Tomopac consistently produces higher correlations to the geoid (more than 20% improvement). At spherical harmonic degrees 1–40, dynamic topography models with intra-oceanic subduction produce universally higher correlations with observations and improve fit by up to 37%. In northeast Asia, Tomopac models show higher correlations (0.46 versus 0.18) to observed residual topography and more accurately predict approximately 1 km of dynamic subsidence within the Philippine Sea plate. We demonstrate that regional deep-time changes in subduction history have widespread impacts on the spatial distribution and magnitude of present-day dynamic topography. Specifically, we find that local changes to plate motion histories can induce dynamic topography changes in faraway regions located thousands of kilometres away. Our results affirm that present-day residual topography observations provide a powerful, additional constraint for reconstructing ancient subduction histories.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Plate reconstructions of oceanic domains are generally based on paleo-magnetic and seafloor spreading records. However, uncertainties associated with such reconstructions grow rapidly with increasing geological age because the original oceanic plates have been subducted. Here we synthesize advances in seismic tomographic mapping of subducted plates now lying within the mantle that assist plate reconstructions. Our proposed Japan–NW Pacific subduction histories incorporate tomography results and show three distinct stages comparable to those revealed by geochronology, petrology, and geochemistry. We propose major revisions to previously accepted ideas about the age, kinematics, and identity of the plates outboard of Japan during the Cretaceous–Paleogene Sanbagawa-Ryoke paired metamorphism. These revisions require updates to relevant plate convergence boundary conditions and thermo-dynamic models.more » « less
-
Abstract Delineation of geochemically distinct domains in Earth’s mantle is essential for understanding large-scale mantle convective flow and dynamics. Previous studies identify possible long-lived (>60 million-year) mantle isotopic domains (i.e. Antarctic-Zealandia, Pacific and Indian) near the Philippine Sea and western Pacific. Here we compile published basalt geochemistry of the Philippine Sea and surroundings and add new Mo isotopic and water content data for Gagua Ridge lavas, northwestern Philippine Sea, to distinguish slab-derived components during subduction. The water content, trace element, and Mo-Sr-Nd isotope compositions of Gagua Ridge arc lavas suggest that slab fluids and sediment melts are responsible for element recycling to the arc. The Philippine Sea basalts show both Indian and Zealandia-Antarctic Pb isotopic signatures; restoration of the basalt locations within a plate reconstruction shows the far-travelled Philippine Sea traversed these mantle domains. We establish the Indian mantle domain eastern boundary at ~120°E under SE Asia and the Indian Ocean. The Antarctic-Zealandia mantle domain lies south of ~10°N within the SW Pacific and has mostly remained in oceanic realms since ~400 Ma with only limited continental material input.more » « less
-
H Thybo (Ed.)The link between surface tectonic plates and mantle slabs is fundamental for paleo-tectonic reconstructions and for our understanding of mantle dynamics. Many seismic tomography-based studies have assumed vertical slab sinking and projected mantle features to the surface to reconstruct paleo-trench locations or explain tectonic features. Here, we used a slab-unfolding approach that does not require assumptions about sinking paths or rates to re-interpret the seismic structure of the Lesser Antilles slab underneath the Caribbean. A recent study invoked mainly vertical slab sinking and a highly folded and deformed slab to explain seismic Caribbean mantle structures. However, our results show that the upper-mantle Lesser Antilles slab structure can be better explained by limited intra-slab deformation and up to ~900 km lateral slab transport towards the northwest after subduction. Our results indicate that such lateral slab transport can occur even with probable weaknesses in the slab that originate from a subducted fossil ridge-transform system. We ascribe the lateral slab transport in the mantle to a kinematic connection with the North American plate, which has migrated northwestward since the Eocene.more » « less
An official website of the United States government
